

Water Auditing

- 1. Systematically account for known water volumes to estimate volumes of Water Loss.
- 2. Evaluate data source reliability.
- 3. **Communicate** water distribution efficiency.

Water Auditing

1. Account for volumes...

WATER SUPPLIED	AUTHORIZED CONSUMPTION	BILLED AUTHORIZED CONSUMPTION	BILLED METERED CONSUMPTION	- REVENUE WATER
			BILLED UNMETERED CONSUMPTION	
		UNBILLED AUTHORIZED CONSUMPTION	UNBILLED METERED CONSUMPTION	\$\$\$
			UNBILLED UNMETERED CONSUMPTION	
		\$\$\$	CUSTOMER METER INACCURACIES	NONREVENUE WATER
	WATER LOSSES	APPARENT LOSSES	UNAUTHORIZED CONSUMPTION	
		\$\$\$	DATA HANDLING ERRORS	
		♦ REAL I	.OSSES 🍐	

- Mass balance process of elimination
- Account for all water
- Accuracy matters!

Water Auditing

1. ... Estimate volumes of Water Loss!

Apparent Losses

Real Losses

2. Evaluate data reliability Complete? Consistent? Accurate? MONTHLY TOTAL PRODUCTION MONTHLY TOTAL PRODUCTION Does the data story make sense?

Water Auditing

3. Communicate water distribution efficiency

customized performance indicators

financial value of Water Losses

\$\$\$

Types of Water Loss

Apparent Losses

Real Losses

Apparent Losses

water volume that reaches customers

but is not registered or properly tracked

(and so you're not paid)

Apparent Losses

often referred to as "paper losses"

focus on revenue optimization

reducing Apparent Losses *increases revenue*

but creates *no new water*

Real Losses

reducing Real Losses creates an additional resource

can reduce operating costs can defer capital expenditure

Benefits of Water Loss Control

save water

reduce costs

be proactive

- identify what you don't know
- · understand your system
- reduce O&M and CIP costs
- better manage assets
- · optimize meter replacement
- · conserve water
- · improve sustainability
- be ahead of regulation
- lessen liability
- build credibility with stakeholders

better information → better system management

Water Loss Control 4 **Determine Loss** Distinguish Types Evaluate Implement Volumes of Leakage **Economics** Interventions AWWA water breakdown of costs of losses leak detection audit types of leakage costs of (Component Apparent & Real intervention improvement Analysis Model) Loss volumes strategies pressure sources of management Apparent Loss cost effective!

AWWA Free Water Audit Software

Water Audit Jeopardy!

What Constitutes a Meter?

Gremlins in the Data Chain

Primary Device: Measuring Element Conducts the measurement

Secondary Device: Register, Transmitter Converts, communicates the measurement

Tertiary Device: Remote Database Records, archives the measurement

Accuracy Testing v Calibration

Primary Device: Accuracy Testing

Independent measurement for comparison

Secondary Device: Calibration

Checks alignment of primary measurement

to register and signal output

Tertiary Device: Calibration

Checks alignment of secondary signal to

SCADA output

Flow Data Archiving

- Production flow data should be reviewed every business day for data gaps
- · Gaps occur due to:
 - Unplanned interruption: lightning strike, power
 - Planned interruption: instrumentation calibration
- Ga shċ and dai

ps in water flow data ould be quantified d added back to the ily total
(Source: AWWA M36 Publication, 4 th

	High Service	High Service	
8/15/2012,	Pumping Rate, mgd	Pumping Rate, mgo	
hrs	actual flow	raw recorded data	
0:00	8.69	8 69	
1:00	8.65	8.65	
2:00	8.32	8.32	
3:00	8.11	8.11	
4:00	7.94	0	
5:00	8.02	0	
6:00	8.44	Ö	
7:00	8.98	0	
8:00	9.34	0	
9:00	9.25	0	
10:00	9.17	0	
11:00	9.12	9.12	
12:00	9.27	9.27	
13:00	9.22	9.22	
14:00	9.08	9.08	
15:00	8.99	8.99	
16:00	9.14	9.14	
17:00	9.18	9.18	
18:00	9.25	9.25	
19:00	9.22	9.22	
20:00	8.82	8.82	
21:00	8.78	8.78	
22:00	8.75	8.75	
23:00	8.71	8.71	
0:00	8.68	8.68	
Total	212.43	151.29	
Average	8.85	6.30	
Difference		2.55	

Accuracy in the Water Balance #1 - Meter wear #4 – Meter programming #2 – Meter location #5 - Flow data archiving #3 – Meter selection

Water Audit Validation

Data validation can be performed at distinct levels.

Level 1 – data validity grading and analysis of summary records

Level 2 – desktop analysis of existing raw data behind summary records

Level 3 – new data collection in field – testing, calibration, flow/pressure, etc.

Data validation doesn't necessarily fix all errors in data.

After all, auditing is retrospective.

Water Audit Validation

Each level of validation is defined by distinct

goals

outcomes

limitations

Scale of validation effort should match desired results.

Level 1 Validation – "DVS"

focus: accurate assignment of data validity grades

correct application of methodology

identify macroscopic errors if present

GOALS: confirm interpretation of methodology

identify macroscopic errors

assign correct data validity grades

OUTCOMES: correct data validity grades

recommendations for higher-level validation activity

LIMITATIONS: does not correct errors in raw data

does not study instrument performance

Level 2 Validation – "Raw Data"

focus: full interrogation of water audit data sources

assessment of data chain fidelity

GOALS: study data transfer from instrument to water audit

correct for raw data gaps, anomalies, and redundancies confirm correct application of test results, pressure data

OUTCOMES: identification of best data sources

documentation of problems in raw data

recommendations for level 3 validation activity

LIMITATIONS: time intensive!

does not measure instrument performance

Level 3 Validation – "Instruments"

focus: corroboration of water audit results

assessment of instrument performance

GOALS: measure supply meter and 4-20 mA accuracy

study accuracy of customer meter population

corroborate water audit results (estimate of Real Loss)

OUTCOMES: understanding of master meter error

verification of leakage volume water loss management insight

LIMITATIONS: time and resource intensive!

does not always uncover water audit data issues

The Validator

The validator is essential to the process of validation!

The validator should be...

- knowledgeable
- objective
- transparent
- methodical
- diplomatic

The validator should NOT be...

...the auditor!

Level 1 Validation

correct interpretation of methodology accurate assignment of data validity scores

primary validation tool: engaged interview

- 1. Collect audit and request supporting documents.
- 2. Examine initial performance indicators
- 3. Validate audit input.
- 4. Re-examine performance indicators.
- 5. Document results.

1. Collect documents

REQUIRED	SUPPLEMENTAL	
☐ Volume from Own Sources broken down by month and meter	☐ Customer Meter Inaccuracy derivation☐ Average Operating Pressure derivation	
☐ Water Imported broken down by month and meter	☐ Customer Retail Unit Cost derivation	
☐ Water Exported broken down by month and meter	□ Variable Production Cost derivation	
☐ Supply Meter Testing	☐ System Schematic showing locations of Supply and Export Me	
☐ Volume of Water Sold broken down by month and charge code		

2. Look at Pls

FINANCIAL INDICATORS	CHECK
NRW volume as % of Water Supplied	> 0%
NRW value as % of operating cost	< 100%

OPERATIONAL EFFICIENCY INDICATORS	CHECK
Apparent Losses per Service Connection per Day	> 0
Real Losses per Service Connection per Day	> 0
Real Losses per Service Connection per Day per PSI	> 0
Infrastructure Leakage Index	> 1.0

Anything funky going on?

3. Validate inputs.

How did the auditor arrive at the water audit input?

How did the auditor **interpret general methodology and definitions** to apply to the specifics of his or her system?

How did the auditor select a data validity grade?

How does the audit input **compare to previous years** (if applicable)?

3. Validate inputs.

Is the data validity score defensible?

ALL criteria must be met for a given score and all scores below it for that score to apply.

Does anything need to be changed to make the audit more accurate?

4. Look at PIs again.

Any changes?

Do the PIs make more sense? Or not?

Remember: level 1 validation doesn't fix most errors in data and instrumentation.

5. Document!

- Any data validity grade changes
- Any audit input changes
- · Outstanding questions or actions needed
- Evaluation of audit metrics v reasonable ranges and expectation for the system
- Recommendations for advanced validation as warranted

Now what?

Level 2 validation – raw data, data transfer

Level 3 validation – results confirmation, instruments

More audits! Best when performed annually.

deeper water loss analysis → water loss control program

Water Loss Control

The end goal:

cost-effective informed

Water Loss Control Program

auditing and validation alone do not save money and water

Exercise Your turn!

You will receive an example water audit and some supporting data for you to review. Your instructions are:

- 1. Identify and correct any errors in the inputs
- 2. Determine the appropriate data grades where sufficient information is provided. Otherwise notate what further information is needed to assign remaining data grades. Keep notes we will discuss!
- 3. Evaluated the performance indicators and determine where advanced validation should focus, if warranted.

Recap

How'd it go?

What were the results of your level 1 validation?

What questions remain about the water audit?

What info did you determine to be missing to assess the data validity grades?

Review

Validation improves water audits.

Validation can be conducted at varying levels of rigor, each with distinct goals, outcomes, and limitations.

Level 1 validation aims to confirm application of methodology and assignment of data validity grades.

A standard approach to level 1 validation relies primarily on an interview with the auditor or audit team.

Phase 3 Data Request

- Timeframe for the data requested unless noted otherwise: Most recent year (either calendar or fiscal) plus 2 months on the front and back end (so 16 months total)
- Format for the data requested: Excel preferred, scan or PDF if Excel format not available.
- Deadline to provide the requested data: Monday, May 15th, 2017.

Most recent year (either calendar or fiscal) water audit, in either

- AWWA Free Water Audit Software format if you have it or
- · Your own format if you are not using the AWWA software

Phase 3 Data Request

Water Supplied

- Basic schematic showing where supply meters are located relative to distribution system, including any export or import meters, and pressure zones if applicable
- Inventory or your finished water meters, import water meters and export water meters – size, type & age.
- Provide your current policy for flow testing and/or signal calibration of these meters, if you have one.
- Provide all available records/reports/data from testing and/or calibration activities for each finished water and/or purchase meter.
- Table of volume produced from own sources, by month, by finished water meter (if applicable)
- Table of volume imported from another system(s), by month, by import water meter (if applicable)
- Table of volume exported to another system(s), by month, by import water meter (if applicable)

Phase 3 Data Request

Authorized Consumption

- For billed water, provide volumes sold by charge code, by month. Include key for charge codes.
- For unbilled water, provide any available summary of tracking data such as flushing and fire estimates.

Apparent Loss

- Any available customer meter testing results.
- Provide your policy/practice for testing of customer meters, if you have one. Note if you have a different testing policy for large vs small meters.
- Provide your policy/practice for customer meter replacement.

System data – as of today

- Total miles of distribution main, including hydrant laterals
- Number of active and inactive taps.
- General description of operating pressure how many pressure zones, and what are the ranges of pressure in each zone. Provide any available pressure data.

Phase 3 Data Request

Cost data - for audit year only

- Total annual operating cost for the water system, including admin (billing, management) and water debt service, excluding any costs associated with non-potable water (sewer, storm, etc).
- Total commodity revenue (excluding base charges, consumption only) from water sales and sewer sales.
- Total cost for power (supply & distribution), treatment chemicals, residuals management (if applicable).
- Total cost for water purchases, if applicable.
- Total cost for damages paid on claims resulting from main or service line breaks for the past 5 years.
- Itemized depreciation schedule for water system pumping and treatment assets, if available.

Phase 3 Data Request

- Transmittal of data by email if that is easiest
- If file sizes are too large, let us know and we will send you a link to upload the data to us

